= o B¢ Microsoft

C++ Team Blog v ¥ Theme

Rvalue References: C++0x Features in VC10, Part 2

Visual CPP Team

February 3rd, 2009 | H1 1| © o0

f ¥ in

Part 1 of this series covered lambdas, auto, and static_assert.

Today, I'm going to talk about rvalue references, which enable two different
things: move semantics and perfect forwarding. This post will be long, because
I'm going to explain how rvalue references work in great detail. They're initially
very confusing because they distinguish Ivalues from rvalues, which very few
C++98/03 programmers are extensively familiar with.

Fear not, for using rvalue references is easy, much easier than it initially sounds.
Implementing either move semantics or perfect forwarding in your own code boils
down to following simple patterns, which I will demonstrate. And it’s definitely
worth learning how to use rvalue references, as move semantics can produce order
of magnitude performance improvements, and perfect forwarding makes writing
highly generic code very easy.

Feedback &

https://www.microsoft.com/
https://devblogs.microsoft.com/cppblog/wp-login.php?redirect_to=https://devblogs.microsoft.com/cppblog/rvalue-references-c0x-features-in-vc10-part-2/
https://devblogs.microsoft.com/cppblog/wp-login.php?redirect_to=https://devblogs.microsoft.com/cppblog/rvalue-references-c0x-features-in-vc10-part-2/
https://www.facebook.com/sharer/sharer.php?u=https://devblogs.microsoft.com/cppblog/rvalue-references-c0x-features-in-vc10-part-2/
https://twitter.com/intent/tweet?url=https://devblogs.microsoft.com/cppblog/rvalue-references-c0x-features-in-vc10-part-2/&text=Rvalue References: C 0x Features in VC10, Part 2
https://www.linkedin.com/shareArticle?mini=true&url=https://devblogs.microsoft.com/cppblog/rvalue-references-c0x-features-in-vc10-part-2/
http://blogs.msdn.com/vcblog/archive/2008/10/28/lambdas-auto-and-static-assert-c-0x-features-in-vc10-part-1.aspx

Ivalues and rvalues in C++98/03

In order to understand rvalue references in C++0x, you must first understand
Ivalues and rvalues in C++98/03.

The terminology of “lvalues” and “rvalues” is confusing because their history is
confusing. (By the way, they're just pronounced as "L values” and "R values”,
although they’re written as single words.) These concepts originally came from C,
and then were elaborated upon by C++. To save time, I'll skip over their history,
including why they’re called “lvalues” and “rvalues”, and I'll go directly to how they
work in C++98/03. (Okay, it's not a big secret: “L” stands for “left” and “"R” stands
for “right”. But the concepts have evolved since the names were chosen, and the
names aren’t very accurate anymore. Instead of going through the whole history
lesson, you can consider the names to be arbitrary like “up quark” and “down
quark”, and you won't lose anything.)

C++03 3.10/1 says: “Every expression is either an Ivalue or an rvalue.” 1It's
important to remember that lvalueness versus rvalueness is a property of
expressions, not of objects.

Lvalues name objects that persist beyond a single expression. For example, obj ,
*ptr , ptrlindex] , and ++x are all Ivalues.

Rvalues are temporaries that evaporate at the end of the full-expression in which
they live (“at the semicolon”). For example, 1729 , x +y , std:string("meow”) , and x++
are all rvalues.

Notice the difference between ++x and x++ . If we have int x = 0; then the
expression x is an lvalue, as it names a persistent object. The expression ++x is
also an Ivalue. It modifies and then names the persistent object. However, the
expression x++ is an rvalue. It copies the original value of the persistent object,
modifies the persistent object, and then returns the copy. This copy is a temporary.

Both ++x and x++ increment x, but ++x returns the persistent object itself, while x++
returns a temporary copy. That's why ++x is an Ivalue, while x++ is an rvalue.
Lvalueness versus rvalueness doesn’t care about what an expression does, it cares
about what an expression names (something persistent or something temporary).

If you want to build up intuition for this, another way to determine whether an
expression is an lvalue is to ask “can I take its address?”. If you can, it's an lvalue.
If you can’t, it's an rvalue. For example, &obj , &*ptr , &ptrlindex] , and &++x are all
valid (even though some of those expressions are silly), while &1729 , &(x +vy) ,
&std::string(“meow”) , and &x++ are all invalid. Why does this work?&nbs p; The
address-of operator requires that its “operand shall be an Ivalue” (C++03 5.3.1/2).
Why does it require that? Taking the address of a persistent object is fine, but
taking the address of a temporary would be extremely dangerous, because
temporaries evaporate quickly.

The preceding examples ignore operator overloading, which is convenient syntax for
a function call. “A function call is an lvalue if and only if the result type is a
reference.” (C++03 5.2.2/10) Therefore, given vector<int> v(10, 1729); , v[0] is an
Ivalue because operator[]() returns int& (and &v[0] is valid and useful), while given
string s("foo”); and string t("bar”); , s + t is an rvalue because operator+() returns string
(and &(s + t) is invalid).

Both lvalues and rvalues can be either modifiable (non-const) or non-modifiable
(const). Here are examples:

string one("cute”);

const string two(“fluffy”);

string three() { return “kittens”; }

const string four() { return “are an essential part of a healthy diet”; }

one; // modifiable Ivalue

two; // const Ivalue

three(); // modifiable rvalue

four(); // const rvalue

Type& binds to modifiable lvalues (and can be used to observe and mutate them).

It can’t bind to const lvalues, as that would violate const correctness. It can’t bind to
modifiable rvalues, as that would be extremely dangerous. Accidentally modifying
temporaries, only to have the temporaries evaporate along with your modifications,
would lead to subtle and obnoxious bugs, so C++ rightly prohibits this. (I should
mention that VC has an evil extension that allows this, but if you compile with /W4 ,
it warns when the evil extension is activated. Usually.) And it can’t bind to const
rvalues, as that would be doubly bad. (Careful readers should note that I'm not
talking about template argument deduction here.)

const Type& binds to everything: modifiable Ivalues, const Ivalues, modifiable rvalues,
and const rvalues (and can be used to observe them).

A reference is a name, so a reference bound to an rvalue is itself an Ivalue (yes, L).
(As only a const reference can be bound to an rvalue, it will be a const Ivalue.) This
is confusing, and will be an extremely big deal later, so I'll explain further. Given
the function void observe(const string& str) , inside observe()'s implementation, str is a
const lvalue, and its address can be taken and used before observe() returns. This is

true even though observe() can be called with rvalues, such as three() or four() above.
observe(“purr”) can also be called, which constructs a temporary string and binds str to
that temporary. The return values of three() and four() don’t have names, so they’re
rvalues, but within observe(), str is a name, so it's an lvalue. As I said above,
“lvalueness versus rvalueness is a property of expressions, not of objects”. Of
course, because str can be bound to a temporary which will evaporate, its address
shouldn’t be stored anywhere where it could be used after observe() returns.

Have you ever bound an rvalue to a const reference and then taken its address?

Yes, you have! This is what happens when you write a copy assignment operator,
Foo& operator=(const Foo& other) , with a self-assignment check, if (this != &other) { copy
stuff; } return *this; , and you copy assign from a temporary, like Foo make_foo(); Foo f; f =
make_foo(); .

At this point, you might ask, “"So what’s the difference between modifiable rvalues
and const rvalues? I can’t bind Type& to modifiable rvalues, and I can’t assign things
(etc.) to modifiable rvalues, so can I really modify them?” This is a very good
question! In C++98/03, the answer is that there’s a slight difference: non-const
member functions can be called on modifiable rvalues. C++ doesn’t want you to
accidentally modify temporaries, but directly calling a non-const member function on
a modifiable rvalue is explicit, so it’s allowed. In C++0x, the answer changes
dramatically, making move semantics possible.

Congratulations! Now you have what I call “lvalue/rvalue vision”, the ability to look
at an expression and determine whether it's an Ivalue or an rvalue. Combined with
your “const vision”, you can precisely reason that given void mutate(string& ref) and
the definitions above, mutate(one) is valid, while mutate(two), mutate(three()),
mutate(four()), and mutate(“"purr”) are invalid, and all of observe(one), observe(two),
observe(three()), observe(four()), and observe(“purr”) are valid. If you're a C++98/03
programmer, you already knew which of these calls were valid and which were
invalid; your “gut feeling”, if not your compiler, would have told you that
mutate(three()) was bogus. Your new lvalue/rvalue vision tells you precisely why
(three() is an rvalue, and modifiable references can’t be bound to rvalues). Is that
useful? To language lawyers, yes, but not really to normal programmers. After all,
you've gotten this far without knowing all of this stuff about lvalues and rvalues.
But here’s the catch: compared to C++98/03, C++0x has vastly more powerful
Ivalue/rvalue vision (in particular, the ability to look at an expression, determine

whether it’s a modifiable/const Ivalue/rvalue, and do something about it). In order
to use C++0x effectively, you need lvalue/rvalue vision too. And now you have it,
SO we can proceed!

the copying problem

C++98/03 combines insanely powerful abstraction with insanely efficient execution,
but it has a problem: it’s overly fond of copying. Things with value semantics
behave like ints, so copying a thing doesn’t modify the source, and the resulting
copies are independent. Value semantics are great, except that they tend to lead to
unnecessary copies of heavy objects like strings, vectors, and so forth. (“Heavy”
means “expensive to copy”; a million-element vector is heavy.) The Return Value
Optimization (RVO) and Named Return Value Optimization (NRVO), where copy
constructors are elided in certain situations, help to alleviate this problem, but they
don’t remove all unnecessary copies.

The most unnecessary copies are those where the source is about to be destroyed.
Would you photocopy a sheet of paper and then immediately throw away the
original, assuming that the original and the photocopy are identical? That would be
wasteful; you should keep the original and not bother with the photocopy. Here's
what I call “the killer example”, derived from one of the Standardization
Committee’s examples (in N1377). Suppose that you have a bunch of strings, like
this:

string sO("“my mother told me that”);

string s1(“cute”);

string s2(“fluffy”);

string s3("kittens”);

string s4("are an essential part of a healthy diet");

And that you concatenate them like this:

"mon "mon mon "mon

stringdest=sO0+"" +sT+""+s2+""+s3+"" + 54

How efficient is this? (We're not worrying about this specific example, which
executes in microseconds; we're worrying about its generalization, which occurs
throughout the entire language.)

Each call to operator+() returns a temporary string. There are 8 calls to operator+() ,
so there are 8 temporary strings. Each one, upon its construction, performs a
dynamic memory allocation and copies all of the characters that have been
concatenated so far, and later, upon its destruction, performs a dynamic memory
deallocation. (If you've heard of the Small String Optimization, which VC performs
in order to avoid dynamic memory allocations and deallocations for short strings, it's
defeated here by my carefully chosen and sufficiently long sO , and even if it applied,
it couldn’t avoid the copying. If you've heard of the Copy-On-Write “optimization”,
forget about it - it doesn’t apply here, and it’s a pessimization under multithreading,
so Standard Library implementations don’t do it anymore.)

In fact, because every concatenation copies all of the characters that have been
concatenated so far, this has quadratic complexity in the humber of concatenations.
Yuck! This is extraordinarily wasteful, which is especially embarrassing for C++.
Why is this happening, and what can we do about it?

The problem is that operator+() , which takes two const string& or one const string&

and one const char * (there are other overloads, which we aren’t using here), can’t
tell whether it’s being fed lvalues versus rvalues, so it always has to create and
return a new temporary string . Why do Ivalues versus rvalues matter?

" on

When evaluating sO + " ", it’s absolutely necessary to create a new temporary string
. s0 is an lvalue, naming a persistent object, so we can’t modify it. (Someone
would notice!) But when evaluating (sO + " “) + s1 , we could simply append s1's
contents onto our first temporary string, instead of creating a second temporary and
throwing the first temporary away. This is the key insight behind move
semantics: because sO + " " is an rvalue, an expression referring to a temporary
object, no one else in the entire program can observe that temporary object. If we
could detect that expression as being a modifiable rvalue, we could then proceed to
modify the temporary object arbitrarily, without anyone else noticing. operator+()
isn't “supposed to” modify its arguments, but if they’re modifiable rvalues, who
cares? In this manner, each call to operator+() can append characters onto a single
temporary string . This completely eliminates the unnecessary dynamic memory
management and unnecessary copying, leaving us with linear complexity. Yay!

Technically speaking, in C++0x, each call to operator+() still returns a separate
temporary string . However, the second temporary string (from evaluating (sO + " *) +
s1) is constructed by stealing the memory owned by the first temporary string (from
evaluating sO + " ”) and then appending s1's contents onto that memory (which may
trigger an ordinary geometric reallocation). “Stealing” consists of pointer twiddling:
the second temporary copies and then nulls out the first temporary’s internal
pointer. When the first temporary is eventually destroyed (“at the semicolon”), its
pointer is null, so its destructor does nothing.

In general, being able to detect modifiable rvalues allows you to engage in “resource
pilfering”. If the objects referred to by modifiable rvalues own any resources (such
as memory), you can steal their resources instead of copying them, since they're
going to evaporate anyways. Constructing from or assigning from modifiable
rvalues by taking what they own is generically referred to as “moving”, and
moveable objects have "move semantics”.

This is extremely useful in many places, such as vector reallocation. When a vector
needs more capacity (e.g. during push_back()) and undergoes reallocation, it needs to

copy elements from the old buffer into the new one. If the objects stored in the
vector are expensive to copy (e.g. they could be vectors themselves), then this
reallocation could be costly. This cost can be greatly reduced in many cases

by moving the old elements into the new buffer rather than copying them.
std::vector carries out this operation so long as the move construction of the
elements is guaranteed to not throw an exception, as otherwise this could result in
lost data.

Visual CPP Team
Follow 3\

Posted in C++

Read next

MFC Restart Manager Support in VS2010

Hi, | am Weidong Huang, a Software Design Engineer in Test in the Visual C++ group.
Today | am going to talk about MFC's support of Restart Manager ...

Visual CPP Team
February 18, 2009

[1 0 comment

Quick Tips On Using Whole Program Optimization

Hi, I'm Jerry Goodwin from the Visual C++ code generation and optimization team, with
a couple quick tips on using Whole Program Optimization, also referred to as ...

Visual CPP Team
February 24, 2009

[1 0 comment

https://devblogs.microsoft.com/cppblog/author/vcblog
https://devblogs.microsoft.com/cppblog/author/vcblog/feed/
https://devblogs.microsoft.com/cppblog/category/cplusplus/
https://devblogs.microsoft.com/cppblog/mfc-restart-manager-support-in-vs2010/
https://devblogs.microsoft.com/cppblog/author/vcblog
https://devblogs.microsoft.com/cppblog/mfc-restart-manager-support-in-vs2010/#comments
https://devblogs.microsoft.com/cppblog/quick-tips-on-using-whole-program-optimization/
https://devblogs.microsoft.com/cppblog/author/vcblog
https://devblogs.microsoft.com/cppblog/quick-tips-on-using-whole-program-optimization/#comments

1 comment

Comments are closed. Login to edit/delete your existing comments

‘ David Hanney
May 28, 2019 9:40 pm

50 vV @

Interesting and infomative article right up until it stops midsentence.

“This is extremely useful in many places, such as vector reallocation. When

a vector needs more capacity (e.g. during push_back()) and undergoes reallocation, it
needs to copy elements from” ... from where? grrrrrrr

Relevant Links

Getting Started with C++ in VS
Bring Your Existing C++ Code to VS
C++ Code Editing & Navigation
C++ Unit Testing

C++ Debugging & Diagnostics
Collaborating with Your Team in VS
C++ Windows Development

C++ Linux Development

C++ Android & iOS Development

C++ Game Development

Topics

C++
Announcement
CMake

New Feature

Linux

https://devblogs.microsoft.com/cppblog/wp-login.php?redirect_to=https://devblogs.microsoft.com/cppblog/rvalue-references-c0x-features-in-vc10-part-2/#comments
https://devblogs.microsoft.com/cppblog/wp-login.php?redirect_to=https://devblogs.microsoft.com/cppblog/rvalue-references-c0x-features-in-vc10-part-2/#comment-291
https://aka.ms/getting-started-visual-studio-for-c-and-cpp-dev/
https://aka.ms/bring-your-cpp-code-to-visual-studio
https://aka.ms/c-code-editing-and-navigation-in-visual-studio
https://aka.ms/cpp-testing-in-visual-studio
https://aka.ms/c-debugging-and-diagnostics
https://aka.ms/visual-studio-for-teams-of-cpp-developers
https://aka.ms/windows-desktop-development-with-c-visual-studio
https://aka.ms/linux-development-with-c-in-visual-studio
https://aka.ms/android-ios-development-with-c-in-visual-studio
https://aka.ms/directx-game-development-with-c-in-visual-studio
https://devblogs.microsoft.com/cppblog/category/cplusplus/
https://devblogs.microsoft.com/cppblog/category/announcement/
https://devblogs.microsoft.com/cppblog/category/cmake/
https://devblogs.microsoft.com/cppblog/category/new-feature/
https://devblogs.microsoft.com/cppblog/category/linux/

Visual Studio Code
Diagnostics
General C++ Series
performance
Vcpkg

Writing Code

Archive

February 2023
January 2023
December 2022
November 2022
October 2022
September 2022
August 2022
July 2022

June 2022

May 2022

April 2022

Stay informed

A\

https://devblogs.microsoft.com/cppblog/category/linux/
https://devblogs.microsoft.com/cppblog/category/visual-studio-code/
https://devblogs.microsoft.com/cppblog/category/diagnostics/
https://devblogs.microsoft.com/cppblog/category/general-cpp-series/
https://devblogs.microsoft.com/cppblog/category/performance/
https://devblogs.microsoft.com/cppblog/category/vcpkg/
https://devblogs.microsoft.com/cppblog/category/writing-code/
https://devblogs.microsoft.com/cppblog/2023/02/
https://devblogs.microsoft.com/cppblog/2023/01/
https://devblogs.microsoft.com/cppblog/2022/12/
https://devblogs.microsoft.com/cppblog/2022/11/
https://devblogs.microsoft.com/cppblog/2022/10/
https://devblogs.microsoft.com/cppblog/2022/09/
https://devblogs.microsoft.com/cppblog/2022/08/
https://devblogs.microsoft.com/cppblog/2022/07/
https://devblogs.microsoft.com/cppblog/2022/06/
https://devblogs.microsoft.com/cppblog/2022/05/
https://devblogs.microsoft.com/cppblog/2022/04/
https://devblogs.microsoft.com/cppblog/feed/

What's new

Surface Pro 9

Surface Laptop 5
Surface Studio 2+
Surface Laptop Go 2
Surface Laptop Studio
Surface Go 3
Microsoft 365

Windows 11 apps

Business

Microsoft Cloud
Microsoft Security
Dynamics 365

Microsoft 365

Microsoft Power Platform
Microsoft Teams
Microsoft Industry

Small Business

Sitemap Contact Microsoft

Microsoft Store

Account profile
Download Center
Microsoft Store support
Returns

Order tracking

Virtual workshops and training

Microsoft Store Promise

Flexible Payments

Developer & IT

Azure

Developer Center
Documentation

Microsoft Learn

Microsoft Tech Community
Azure Marketplace
AppSource

Visual Studio

Privacy Terms of use Trademarks Safety & eco

Education

Microsoft in education

Devices for education

Microsoft Teams for Education
Microsoft 365 Education

Education consultation appointment
Educator training and development
Deals for students and parents

Azure for students

Company

Careers

About Microsoft
Company news
Privacy at Microsoft
Investors

Diversity and inclusion
Accessibility

Sustainability

Recycling About ourads © Microsoft 2023

https://www.microsoft.com/en-us/d/surface-pro-9/93VKD8NP4FVK
https://www.microsoft.com/en-us/d/surface-laptop-5/8XN49V61S1BN
https://www.microsoft.com/en-us/d/surface-studio-2plus/8VLFQC3597K4
https://www.microsoft.com/en-us/d/surface-laptop-go-2/8PGLPV76MJHN
https://www.microsoft.com/en-us/d/surface-laptop-studio/8SRDF62SWKPF
https://www.microsoft.com/en-us/d/surface-go-3/904H27D0CBWN
https://www.microsoft.com/microsoft-365
https://www.microsoft.com/windows/windows-11-apps
https://account.microsoft.com/
https://www.microsoft.com/en-us/download
https://go.microsoft.com/fwlink/?linkid=2139749
https://go.microsoft.com/fwlink/p/?LinkID=824764&clcid=0x409
https://account.microsoft.com/orders
https://www.microsoft.com/en-us/store/workshops-training-and-events?source=footer
https://www.microsoft.com/en-us/store/b/why-microsoft-store?icid=footer_why-msft-store_7102020
https://www.microsoft.com/en-us/store/b/payment-financing-options?icid=footer_financing_vcc
https://www.microsoft.com/en-us/education
https://www.microsoft.com/en-us/education/devices/overview
https://www.microsoft.com/en-us/education/products/teams
https://www.microsoft.com/en-us/education/buy-license/microsoft365
https://www.microsoft.com/en-us/store/b/business-consultation?tab=educationconsultation&icid=CNavfooter_educationconsultation
https://education.microsoft.com/
https://www.microsoft.com/en-us/store/b/education
https://azure.microsoft.com/en-us/free/students/
https://www.microsoft.com/en-us/microsoft-cloud
https://www.microsoft.com/en-us/security
https://dynamics.microsoft.com/en-us/
https://www.microsoft.com/en-us/microsoft-365/business/
https://powerplatform.microsoft.com/en-us/
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/industry
https://www.microsoft.com/en-us/store/b/business?icid=CNavBusinessStore
https://azure.microsoft.com/en-us/
https://developer.microsoft.com/en-us/
https://learn.microsoft.com/docs/
https://learn.microsoft.com/
https://techcommunity.microsoft.com/
https://azuremarketplace.microsoft.com/en-us/
https://appsource.microsoft.com/en-us/
https://visualstudio.microsoft.com/
https://careers.microsoft.com/
https://www.microsoft.com/about
https://news.microsoft.com/
https://privacy.microsoft.com/en-us
https://www.microsoft.com/investor/default.aspx
https://www.microsoft.com/en-us/diversity/
https://www.microsoft.com/en-us/accessibility
https://www.microsoft.com/en-us/sustainability/
https://www.microsoft.com/en-us/sitemap1.aspx
https://support.microsoft.com/contactus
https://go.microsoft.com/fwlink/?LinkId=521839
https://go.microsoft.com/fwlink/?LinkID=206977
https://go.microsoft.com/fwlink/?linkid=2196228
https://go.microsoft.com/fwlink/?linkid=2196227
https://www.microsoft.com/en-us/legal/compliance/recycling
https://choice.microsoft.com/

